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Flow cytometry (FCM) is widely used in health research and in treatment for a variety of tasks, such as in the diagnosis and
monitoring of leukemia and lymphoma patients, providing the counts of helper-T lymphocytes needed to monitor the course
and treatment of HIV infection, the evaluation of peripheral blood hematopoietic stem cell grafts, and many other diseases. In
practice, FCM data analysis is performed manually, a process that requires an inordinate amount of time and is error-prone,
nonreproducible, nonstandardized, and not open for re-evaluation, making it the most limiting aspect of this technology. This
paper reviews state-of-the-art FCM data analysis approaches using a framework introduced to report each of the components in
a data analysis pipeline. Current challenges and possible future directions in developing fully automated FCM data analysis tools
are also outlined.
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1. Introduction

Flow cytometry (FCM) is widely used in health research and
treatment for a variety of tasks, such as providing the counts
of helper-T lymphocytes needed to monitor the course and
treatment of HIV infection, in the diagnosis and monitoring
of leukemia and lymphoma patients, the evaluation of
peripheral blood hematopoietic stem cell grafts, and many
other diseases [1-8]. The technology is also used in cross-
matching organs for transplantation, research involving stem
cells, vaccine development, apoptosis, phagocytosis, and
a wide range of cellular properties including phenotype,
cytokine expression, and cell-cycle status [9-14]. Clinically,
FCM is also used to analyze a wide array of immunological
parameters in disease and to study the humoral and cellular
response to vaccines.

FCM traditionally has been a tube-based technique
limited to small-scale laboratory and clinical studies [15].
Due to recent hardware advances it is now possible to
analyze thousands of samples per day. This has dramatically
increased the efficiency and use of this technique and allowed
the adoption of FCM to high-throughput settings.

It is widely recognized that data analysis is by far one of
the most challenging and time-consuming aspects of FCM
experiments as well as being a primary source of variation in

clinical tests [7, 9, 10, 16-25]. Investigators have traditionally
relied on intuition rather than on standardized statistical
inference in the analysis of FCM data. The increased volume
and complexity of FCM data resulting from the increased
throughput greatly boosts the demand for reliable statistical
methods and accompanying software implementations, for
the analysis of these data [1-6, 16, 20, 23, 26-31]. This is
because the ability to analyze FCM data is lagging far behind
the ability to collect samples and to run FCM analyses, to the
detriment of health research.

This article reviews published approaches for FCM data
analysis in the context of a framework created to facilitate the
reporting and review process.

2. Background

2.1. FCM Data Analysis. In FCM, intact cells and their
constituent components are tagged with fluorescently conju-
gated monoclonal antibodies and/or stained with fluorescent
reagents and then analyzed individually by a flow cytometer.
In the instrument, hydrodynamic forces align the cells and
the fluorescent molecules in/on each cell are excited by
passing through the laser light at speeds exceeding 70 000
cells per second. Each cell passing through the beam also
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scatters light providing an indication of cell shape and size.
A flow cytometer is capable of measuring up to 20 cell
characteristics, for up to millions of individual cells per
sample aliquot [26, 32]. This technology can be used to
examine many cellular parameters on live or fixed cells,
including surface, cytoplasmic, and nuclear proteins, DNA,
RNA, reactive-oxygen species, intracellular pH, and calcium
flux. Measurement of the expression of cellular-activation
markers, intracellular cytokines, immunological signaling,
and cytoplasmic and nuclear cell cycle and transcription
factors can also be readily performed [9, 11, 12, 27, 28, 33—
35].
Typical FCM data analysis involves

(1) gating (i.e., identification of homogenous cell popu-
lations that share a particular function),

(2) interpretation (i.e., finding (or using) correlations
between some characteristics of the identified cell
populations (e.g., percentages of cells in a cell popula-
tion, median fluorescent intensity of a cell population
for different markers) and clinical outcomes (e.g.,
diagnosis, survival).

Gating is a highly subjective process in which the
investigators determine the regions in multiparametric space
that contain the “interesting” data, based on their knowledge
of the experimental factors and experience (Figure 1(a)).
This is a tedious, time-consuming, and often inaccurate task
typically accomplished using proprietary software provided
by instrument manufacturers to serially select regions in
one- and two-dimensional graphical representations of
the data. Intersections or unions of polygonal regions
in hyperspace are then used to filter data and define
a subset or subpopulation of events for further analysis
(Figure 1(b)). This low-dimensional subsetting ignores the
high-dimensional multivariate nature of the data. While
a variety of technical issues can confound the accurate
positioning of gates, even relatively minor differences in
gating can produce different quantitative results [36]. A
recent study involving 15 institutions shows that the mean
interlaboratory coefficient of variation ranged from 17-44%,
even though the same samples and reagents were used and
the preparation of samples was standardized. Even though
all analyses were conducted by individuals with expertise in
flow cytometry, most of the variation was attributed to gating
[36].

2.2. Supervised and Unsupervised Learning Techniques.
Supervised and unsupervised learning techniques can be
used to address the problems faced in gating and interpre-
tation of FCM experiments.

In supervised learning, the variables under investigation
can be split into two groups: explanatory variables (e.g.,
measurements of events in FCM data) and one or more
dependent variables (e.g., cell type). The goal here is to
predict the labels of the input patterns (e.g., labels of
the events in FCM data). This goal can be achieved by
discovering an association between the explanatory variables
and the dependent variable as is done in regression analysis.
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Once this association is discovered through the training
stage, the algorithm can predict the dependent variable for
any event of unknown label. To apply supervised data mining
techniques the values of the dependent variable must be
known for a sufficiently large part of the data set.

Unsupervised learning is closer to the exploratory spirit
of data mining. In unsupervised learning situations all
variables are treated in the same way; there is no dependent
variable. However, there is still a goal to achieve. In
automated gating of FCM data, the goal is to identify the
events that are in the same cluster. Clusters contain groups
of events that are more similar to each other than the events
from other clusters.

The dividing line between supervised learning and unsu-
pervised learning is the same that distinguishes discriminant
analysis from cluster analysis. Supervised learning requires
that the target variable is well defined and that a sufficient
number of its values are given. For unsupervised learning
typically the target variable is either unknown or has only
been recorded for too small a number of cases.

3. Methods of Survey

FCM data analysis designs selected for this review include
papers that met the following criteria.

(1) The keyword “flow cytometry” and one or more
of the keywords “automated analysis”, “automated
gating”, and “automated clustering” appeared in its
title, abstract, or body using Google Scholar search

engine.

(2) The work described one or more automated/semi-
automated data analysis components. Papers that
presented tutorials were not included. Papers that
used manual gating procedures were included only
if they employed automated analysis algorithms to
analyze gating results. Papers that included simple
statistical tests such as Student t-test on manual
gating results and the papers that solely applied static
gates to FCM data (without any other data processing
component) were also not included.

(3) Only papers published in English in refereed interna-
tional journals prior to March 2009 were included.

We use the framework presented in Section 3.1 to report
components involved in FCM data analysis.

3.1. FCM Data Analysis Framework. Figure 2 depicts an
FCM data analysis framework in which an FCM data file
is analyzed through a series of analysis components. This
framework has evolved from the study of FCM literature
covered in this article and work in related fields, including
statistics and computer science. This framework is con-
structed to report details of FCM data analysis studies in a
systematic way to facilitate reporting and review process. The
framework does not incorporate the hardware and software
components used for FCM data collection.
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FIGUrk I: Two-dimensional sequential gating example. (a) Operator selects a subset of “interesting” events (shown within the ellipsoid
region), (b) Selected events in (a) are observed and further analyzed using other dimensions of the data. The axes represent different
parameters representing physical and chemical characteristics of the analyzed cells.

(1) Quality Assessment. Artifacts from sample preparation,
handling, variations in instrument parameters, or other
factors may confound experimental measurements and lead
to erroneous conclusions. Therefore, quality assessment is a
crucial step in the use of high-throughput flow cytometry
and its associated information services [37-39]. The aim
of data quality assessment could include detecting whether
intersample variability measurements of samples are not
likely to be biologically motivated. Such samples should be
identified, investigated, and potentially removed from any
further analyses.

(2) Normalization. Like all other high-throughput data
sources, there is a substantial need for normalization steps
to remove nonbiological variations so that the analysis can
focus on the important and relevant biological variations
between samples. Instrument variability (e.g., changes in
laser power), experimental protocol changes (e.g., changes
in voltage setting of the instrument), and reagent changes
(e.g., using antibodies from different vendors) are examples
of nonbiological factors that can introduce variability in the
data and shift the location of cell populations. Such changes
may affect the analysis of FCM data as the main prerequisite
for automated FCM data analysis is a uniform, quantitative,
and comparable raw data which can be addressed by
developing normalization methodologies.

(3) Outlier Removal. Outliers refer to observations (events
in the FCM data) that deviate to such a large extent from
others so as to arouse suspicion that they do not belong
to the same group of observations of interest. Cell debris,

dead cells, and doublets (multiple events at the same time)
often contaminate FCM data and give rise to outliers.
Statistics derived from data sets that include outliers may be
misleading. Therefore, it is crucial to identify outliers and
account for their prevalence so as to minimize their effect on
subsequent analysis.

(4) Automated Gating. Automated identification of homoge-
nous cell populations that share a particular function is
referred to as automated gating. The main purpose of
automated gating is having an objective and systematic
approach for classifying cells. Automated gating can be used
to

(i) identify known cell populations,

(ii) discover new subpopulations of cells that might
not be easily detected via standard manual gating
methods. For example, cell populations may be
missed due to limitations of two-dimensional manual
gating.

(5) Cluster Labelling. Comparison of FCM samples is only
possible if the same cell populations of different samples are
compared against each other. For example, lymphocyte cells
of two different samples can be compared against each other
but it does not make sense to compare lymphocytes from one
sample to granulocytes of another sample. Cluster labelling is
referred to the procedure of finding similar cell populations
between samples after automated gating. Depending on the
automated gating approach used, cluster labelling may not
be needed as it can be embedded in automated gating
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FIGURE 2: Proposed FCM data analysis framework.

procedure. Note that similar cells within each sample are
identified through automated gating.

(6) Feature Extraction. This step involves computing mea-
surable heuristic properties (also referred to as features)
of the identified gates for further analysis. Percentages of
cells with respect to the total number of cells, median, and
standard deviations of fluorescent intensities of different
markers for the events within each gate (or gates of interest)
are examples of features that can be computed for the next
step.

(7) Interpretation. Interpretation of gating results is highly
dependent on what the objective of the study is. Usually,
there are two major objectives in an FCM-based study: (a)
statistical comparison of samples, where the samples are
compared to see if they share similar characteristics; (b)
classification, where the samples are labeled to predefined
classes such as healthy versus patient or patients with short
survival versus the ones with long survival time. Depending
on the objectives of a study (comparison versus classifica-
tion), unsupervised or supervised learning techniques can be
used.

4. Results

In Table 1, we report the data analysis components of each
paper according to the framework presented in Section 3.
For the papers that reported multiple designs, multiple
classifications were recorded. The designs were categorized
based only on what was implemented and reported in each
paper. Each column in Table 1 reports the details of each
of the components of the FCM data analysis framework,
including the following details of each automated gating
algorithm

(i) capability of supporting multidimensional gating,
(ii) capability of the algorithm to determine the number

of cell populations (gates) automatically,

(iii) whether or not the algorithm belongs to the category
of supervised or unsupervised learning techniques.

All the studies covered in this review (except [40, 41]) use
percentages of cells within the identified gates and/or median
fluorescent intensities of cell populations as the properties

(features) of the identified gates for further analysis. Fur-
thermore, a few studies address quality assessment [42—44]
and normalization [44] of FCM data. Therefore, for effective
use of space, Table 1 does not report the quality assessment,
normalization and feature extraction components of the
framework for each study.

The entries that contain “E” refer to the term “embed-
ded” meaning that either the cluster labelling, determining
the number of cell populations, or outlier detection is
embedded in the automated gating algorithm. Studies that
did not implement a specific data processing component or
do not have a specific capability (e.g., handling multidimen-
sional data) have a “—” entry.

5. Discussion

Although a consensus among researchers for the need of
a framework to describe FCM data analysis is not well
documented, we feel that it can be a useful tool to facilitate
research in this field. A common framework provides a
reference, not only for researcher-to-researcher interaction
but also for communication to persons in related fields
and professions. It will also facilitate technology cross-
fertilization, that is, the ability to recognize and integrate
significant technological advancements made by others into
one’s own work. Therefore, during the course of reviewing
FCM data analysis literature, we created a framework to
report FCM data analysis approaches in a structured way,
which facilitates the reporting and review process in the
future. Our approach was to create an intuitive framework
for organizing and documenting the key data analysis
components described in a study and also provide a means
to identify the data analysis components that have not been
reported. Moreover, the use of this framework makes it easier
to understand the differences between different data analysis
pipelines.

Table 1 provides a summary of the survey, making it a
quick reference to review the results. For example, a quick
look at the first row in Table 1 shows the design components
used by Jeffries et al. [45] in their analysis of FCM data.
Moreover, if somebody is interested in designing or using
automated gating approaches, he/she can quickly identify
the studies that address automated gating of the FCM data
by referring to the third column of Table 1. The proposed
framework is flexible enough to encompass the range of
data analysis approaches covered in this paper. However,
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FIGURE 3: Percentages of studies that address different data analysis
components according to the proposed framework. Note that
cluster labeling approaches that are embedded in gating stage are
counted in the “Cluster Labeling” entry.

refining or expanding it might be necessary in the future.
For example, even though a feature selection component
was not needed to describe current FCM data analysis
studies, addition of this component might be necessary
in future. Feature selection is specifically important as it
can discard the uninformative and also redundant features,
facilitate data visualization and data understanding, reduce
the measurement and storage requirements, reduce training
and utilization times, and defy the curse of dimensionality to
improve prediction performance [88].

Figure 3 shows the percentages of the studies that have
addressed each of the data analysis components according to
the proposed framework.

As shown in Figure 3, most of the studies (more than
70%) focus on automated gating of FCM data from which
65% use unsupervised techniques and 35% use supervised
techniques. However, only few studies focus on quality
control and normalization of FCM data, suggesting that
more work might still be needed in the future.

In the rest of this section we specifically discuss the FCM
data analysis methods that have been used in the context of
the framework introduced in Section 3.1.

5.1. Quality Assessment. The basis of the quality assessment
method proposed in [42, 43] is that, given a cell line, or
a single sample, divided in several aliquots, the distribu-
tion of the same physical or chemical characteristics (e.g.,
side light scatter (SSC) or forward light scatter (FSC))
should be similar between aliquots. To test this hypothesis,
five distinct visualization methods were implemented to
explore the distributions and densities of ungated FCM
data: Empirical Cumulative Distribution Function (ECDF)
plots, histograms, boxplots, and two types of bivariate plots.
Hahne et al. [44] also propose a set of visualization tools
to inspect box plots of fluorescent values, number of cells,
and a measure defined as “odds ratio” for similar samples
within a plate. These different graphical methods provide
investigators with different views of the data and can quickly
flag the samples that are different from the rest. As the flagged
samples may be anomalous for biological reasons, these
samples are worth studying further, and some determination
as to whether the sample presents data quality issues or rather
presents real biological significance should be made [42].
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Problems with the cell suspension, clogging of the needle,
or similar issues can cause unusual patterns in the data.
flowQ R package [89] addresses such problems by developing
several approaches that detect disturbances in the flow of
cells and also detect unusual patterns in the acquisition of
fluorescence and light scatter measurements over time. These
are detected dynamically by identifying trends in the signal
intensity over time or local changes in the measurement
intensities. The underlying hypothesis is that measurement
values are acquired randomly; hence there should not be
any correlation to time. Other quality assessment strategies
may include investigating the number of events or the
number of live cells within a sample. Furthermore, specific
statistical tests addressing quality assurance requirements of
an experiment can be developed. For example, in the FCM
experiments to monitor clonal repopulation of engrafted
single cell hematopoietic stem cells in mice [90, 91],
blood samples are taken and divided into three aliquots.
Each aliquot is stained with cocktail specific for detecting
granulocytes/monocytes, B cells, and T cells. The percentages
of each cell type from the donor population should add to
roughly 100%; otherwise possible problems with the staining
or the gating have occurred. Using such criterion, automated
quality assurance tools can be developed to identify possible
problems in the experiments.

5.2. Normalization. The only study that touches on the
normalization issue of FCM data proposes a method of
normalizing all channels, using a model based on the size
(FSC channel) of the events [44]. The authors show in their
experiment that the increase in autofluorescence associated
with cell size needed to be adjusted for and developed
a specific linear model for this adjustment. Nonbiological
variations can cause a shift or rotation in absolute position
of cell populations. Figure 4 shows an example in which the
voltage of the flow cytometer has changed in the channel
that measures CD3 expression between the two experiments
causing the population marked within the ellipsoid gate to
move substantially (more than 10-fold change in median
fluorescent intensity). Such variations should be accounted
for during data analysis as they can cause misinterpretation
of the results. For example, an ellipsoidal gate defined based
on the data shown in Figure 4(a) would not capture the
population of interest shown in Figure 4(b) even though
the two populations represent the same cell types. While
significant further developments to normalize FCM data are
needed, care should be taken, as biologically motivated vari-
ations should be conserved while removing nonbiological
variations.

5.3. Outlier Removal. Outliers can have a significant effect
on automated gating results. For example, in unsupervised
techniques, they can lead to overestimating the number of
cell populations (i.e., clusters present in the data) needed to
provide a good representation of the data. Moreover, data
contaminated with outliers, when used as example data to
train a supervised technique, can affect decision boundaries
of the algorithm leading to poor gating results.
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FIGURE 4: (a) and (b) Example of cases where flow cytometer voltage changes have caused in a shift in the absolute position of the populations

within the ellipsoid gates.

Outliers can be handled in a number of ways depending
on the learning technique being used. For example, in
the model-based clustering framework [92, 93], they can
be handled by either replacing the Gaussian distribution
with a more robust one (e.g., t [94]) or adding an extra
component to model the outliers (e.g., uniform [92]). Lo
et al. [46] used a t-distribution in the context of model-
based clustering to deal with outliers in FCM data. Jeffries
et al. [45] represent two-dimensional FCM data as an
image and apply a set of morphological operators on the
corresponding image to remove outliers. Although Jeffries’
study concentrates on two-dimensional data, the operators
are applicable to multidimensional data as well. Cluster
membership weights calculated during automated gating
may also be used for outlier identification [30, 46]. When
using supervised learning techniques, suspected examples
can be removed from the learning phase to improve the
generalization performance of the learning algorithm [95].
Furthermore, assigning decision confidence together with
the labels of each event can be utilized to exclude the events
that are less likely to belong to a specific class (e.g., [96-98]).

5.4. Automated Gating. More than 70% of the studies
covered in this review have implemented approaches for
automated gating of the FCM data. In the following subsec-
tions, we focus on these approaches in more detail. Although
the approaches covered in these sections are implemented for
automated gating purposes, most of them are applicable to
interpretation stage of data analysis as well.

5.4.1. Supervised Techniques for Gating. Supervised tech-
niques require training data and a training phase to learn

the relationship between the events and output classes but
unsupervised ones do not need this. Selection of training
data that is representative of all cell populations of interest
is important in training supervised techniques. Supervised
techniques usually classify the input events to one of the
predefined cell populations introduced to the algorithm
in the training stage. Therefore, if a novel cell population
exists in the data, the algorithm classifies that population
as belonging to one of the predefined cell populations and
not as a novel population. Two strategies can overcome this
problem to some extent.

(i) The first one is assigning an “unknown” class for the
input patterns that are unlikely to belong to known
event categories [79, 96, 98]. A disadvantage of this
solution is that if two novel categories exist in the test
data, both will be classified as unknown even though
the unknown class is comprised of multiple novel
classes. It is, however, possible to add another stage of
processing to further investigate the unknown events
to see if they consist of multiple populations. Another
similar solution would be to assume that each event
can belong to several classes with different mem-
bership (e.g., event one belonging to “Class 17 with
70% chance and to “Class 2” with 30% chance) or
to assign decision confidence for each classified event
and reject less confident classifications as outliers or
unknowns [96-98]. Using such a strategy, Wilkins
et al. [75] show that more than 70% of novel species
were successfully identified as “unknown” while the
proportion of correctly classified species decreased
moderately (from 93.8% to 86.8%) compared to the
case when no novel species were identified.
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(ii) The second approach used by Beckman et al. [79]
suggests adding fictitious events that reside in some
of the empty spaces. Input events that are close
to these fictitious events are classified as unknown
events rather than being classified as belonging to
the populations of interest [79]. This approach,
however, needs extensive intervention in the data
space in order to generate populations that represent
unwanted event types. Moreover, this task is imprac-
tical when the dimension of the data is high, as one
needs to generate fictitious data points that represent
different unknown categories throughout the whole
data space [99].

Overall, supervised techniques are suitable for tasks
where we know how many classes exist in the data and a
choice of unknown class would exclude the events that do
not belong to the classes of interest. On the other hand,
unsupervised techniques are more suitable for novel class
discovery tasks.

In supervised learning techniques, the training set should
be a good representative of the future unseen data. Therefore,
reproducible FCM data is necessary. For example, if there
is excessive drift in the centroids of the cell populations,
many of the cells could be misclassified. Some minor amount
of drift can be usually accommodated by the algorithm
itself and also having training sets composed of samples
measured at different times for different individuals [40].
One approach to overcome this problem is to normalize the
data before gating.

Care should be taken when using supervised techniques,
as usually unequal numbers of training patterns of each class
are available, and this can bias the training of the classifier
towards the classes with higher number of training events.
One solution that has been suggested and applied to FCM
data is to take into account a posteriori probabilities and class
probabilities (i.e., the proportion of each of the cell categories
in the training data) [86, 99, 100].

During training, a supervised learning algorithm reaches
a state where, given sufficient and informative data, it should
be capable of predicting the correct label for unseen data.
However, the algorithm may adjust itself to very specific
features of the training data that have little relation to
unseen data. In this process referred to as overfitting,
the performance on the training examples is high while
the performance on unseen data becomes worse. Roughly
speaking, an algorithm that is overfit is like a botanist with
a photographic memory who, when presented with a new
tree, concludes that it is not a tree because it has a different
number of leaves from anything he/she has seen before [101].
Opverfitting can be avoided by employing techniques such as
regularization and early stopping [102-104].

Regularization involves introducing a form of penalty
for complexity of the classification model. An example of
regularization in neural networks is weight decay algorithm
used in MLP neural networks. As large weights can decrease
the performance of an MLP classifier on unseen data, weight
decay penalizes the large weights causing the weights to
converge to smaller absolute values than they otherwise
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would [102]. This strategy has been used in the context of
gating FCM data [77].

In early stopping, the available training data is divided
into two sets, that is, a new training set and a validation set.
In each iteration of learning, the data of the new training set
is used to train the learning algorithm and the validation
set is used to evaluate its performance. The learning phase
is forced to stop once the performance on the validation
set does not improve or degrades. This method can be
used either interactively (based on human intervention)
or automatically (based on some stopping criteria usually
chosen in an adhoc fashion). As mentioned in [105], early
stopping is widely used as it is easy to implement and has
been reported to be superior to regularization methods in
many cases (e.g., [106]).

A number of algorithms in the category of supervised
techniques such as multilayer perceptron (MLP) networks
(e.g., [48, 54]), radial basis function (RBF) networks (e.g.,
[54, 75]), and support vector machines (SVM) [80] have
been used in the context of cell population identification in
FCM data.

A typical MLP network consists of a set of nodes forming
the input layer, one or more hidden layers, and an output
layer. The MLP network has a highly connected topology
since every input node is connected to all nodes in the first
hidden layer, every node in the hidden layers is connected to
all nodes in the next layer, and so on. The value of each node
is determined by a weighted combination of input nodes,
possibly including some nonlinear activation function.

An MLP network is trained by repeated presentation of
input patterns to the network. During the training process,
small iterative weight changes in the structure of the network
are performed until the predicted outputs are considered
close enough to desired outputs. Designing an MLP classifier
is not a trivial task as one needs to determine optimal
parameters of the MLP structure (e.g., number of hidden
layers, number of hidden layer nodes, etc.) for each specific
classification task. For most problems, one hidden layer
is sufficient. Using two hidden layers rarely improves the
model, and it may introduce a greater risk of converging
to a local minima. The network may not be able to model
complex data if inadequate number of hidden layer nodes is
used. On the other hand, if too many nodes are used, the
training time may become excessively long, and the network
may overfit the data. In general, training an MLP is relatively
slow and sometimes the algorithm gets stuck in local minima
and therefore the training process has to be restarted [104].
It has been shown that if an accuracy of (1 — e) on a test set is
desirable, the number of events in the training set, p, should
satisfy p = w/e, where w is the total number of weights
in the network [107]. Hence, to obtain 90% accuracy (e =
0.1) on test set, the desirable number of events required in
training set is at least ten times the total number of weights.
While having p > w/e is definitely desirable, it is sometimes
difficult in practice to build such a large database of clinical
cases. An option is to use a perturbation method to generate
a large number of cases by introducing small variations
in actual cases [77]. The importance of having sufficiently
large training sets to cover biological variation is highlighted
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by the increase in overall identification success of different
marine microalgae in an FCM study [86].

An RBF neural network typically is comprised of three
layers of nodes (i.e., input, hidden and output layers). The
neurons in the hidden layer contain basis functions, usually
Gaussian transfer functions whose outputs are inversely
proportional to the distance from the center of the basis
function. Normally the Euclidean distance is used as the
distance measure, although other distance functions are also
possible. An RBF network output is formed by a weighted
sum of the hidden layer neuron outputs and the unity bias.

The parameters of an RBF network which are determined
in the training stage consist of the positions of the basis
function centers, the radius (spread) of the basis functions
in each dimension, the weights in output sum applied to
the hidden layer nodes outputs as they are passed to the
summation layer, the parameters of the linear part, and so
forth.

Various methods have been used to train RBF networks.
One approach first uses k-means clustering to find cluster
centers which are then used as the centers for the RBF
functions. However, k-means clustering is a computationally
intensive procedure, and it often does not generate the
optimal number of centers. Another approach is to use a
random subset of the training points as the centers.

Assuming that the data is linearly separable, among the
infinite number of hyperplanes that separate the data, an
SVM classifier picks the one that has the smallest general-
ization error. Intuitively, a good choice is the hyperplane
that leaves the maximum margin between the two classes,
where the margin is defined as the sum of the distances of
the hyperplane from the support vectors. Support vectors
are the examples closest to the separating hyperplane and
the aim of an SVM classifier is to orientate this hyperplane
in such a way that it is as far as possible from the closest
members of both classes. If the two classes are nonseparable
we can still look for the hyperplane that maximizes the
margin and that minimizes a quantity proportional to the
number of misclassification errors. The trade-off between
margin and misclassification error is controlled by a positive
constant C (referred to as error penalty) that has to be chosen
beforehand [101, 108].

SVMs are very universal learners. In their basic form,
SVMs learn linear threshold function. Nevertheless, by a
simple “plug-in” of an appropriate kernel function, they
can be extended to nonlinear classifiers such as polynomial
classifiers, radial basis function (RBF) networks, and three-
layer sigmoid neural networks.

Perhaps the biggest limitation of the SVM approach lies
in the choice of the kernel. Once the kernel is fixed, SVM
classifiers have only one user-chosen parameter (the error
penalty) [101].

RBF networks can be trained significantly faster than
MLPs. In addition to the number of hidden layers, a
difference between RBF and MLP classifiers lies in the
nodes of the hidden layer, which use different kernels (basis
functions) to represent the data. RBF networks have the
advantage of not suffering from local minima in the same
way as MLPs. While for an RBF there is no restriction on
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decision boundaries formed, an MLP forms convex decision
boundaries. Moreover, RBF’s hidden layer performs a non-
linear mapping from the input space into a (usually) higher-
dimensional space in which the input patterns become
linearly separable [109]. Although RBF networks are quick
to train, when training is finished and it is being used, it is
slower than an MLP. Therefore, where speed is a factor an
MLP may be more appropriate.

SVM can be seen as a new way to train polynomial, neural
network, or RBF classifiers. While most of the techniques
used to train the above mentioned classifiers are based on the
idea of minimizing the training error, which is usually called
empirical risk, SVMs operate on another induction principle,
called structural risk minimization, which minimizes an
upper bound on the generalization error [108].

In the context of FCM data analysis, Boddy et al. [81]
compares the performances of RBF networks using different
basis functions. Specifically, radially symmetric and a more
general arbitrarily oriented ellipsoidal basis functions were
employed, with the latter proving to be significantly superior
in performance. The distance between input patterns and
the basis function centers are defined by a distance metric,
which determines the shape of the basis function. The
Euclidean distance metric produces hyperspherical (radially
symmetric) basis functions around the basis functions
centers. Mahalanobis distance metric, on the other hand,
allows the hyperellipsoid (nonradially symmetric) to adopt
any orientation that best fits the data distributions.

Wilkins et al. [54] compare several classification algo-
rithms such as MLP, RBE and LVQ (learning vector
quantization) to identify phytoplankton species from FCM
data. The authors show that identification success was
more or less similar using the above-mentioned techniques.
Therefore, they suggest using the criteria mentioned earlier
and characteristics of the data at hand to decide which
method is the best to use. In another study on phyto-
plankton species, Morris et al. [80] demonstrate that an
SVM classifier outperforms RBF classification. These studies
focus on specific data sets and their generalization on
other data sets is unknown. Therefore, picking an algorithm
based on the type of data at hand and above-mentioned
characteristics of learning algorithms is recommended. One
approach that might be worth considering in FCM studies
is the multiple classifier systems (MCSs) [110]. MCSs are
based on combining the outputs of ensembles of different
classifiers (supervised learning techniques). Classification
accuracy improvements are possible provided that a suitable
combination function is designed and that the individual
classifiers make different errors. Ideally, a combination
function should take advantage of the strengths of individual
classifiers, avoid their weaknesses, and improve classification
accuracy [110].

5.4.2. Unsupervised Techniques for Gating. Algorithms for
unsupervised analysis of FCM data should be

(i) computationally efficient as the amount of data
generated for each FCM experiment is large (an
FCM experiment contains measurements for up to
millions of cells for up to 20 parameters),
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(ii) able to detect clusters with different shapes as clusters
(cell populations) in FCM data can have different
shapes ranging from spherical shapes to irregular
shapes such as being highly elongated or even being
curved,

(iii) able to detect populations with different densities and
percentages as FCM samples can contain a wide range
of cell populations in terms of the density of cells
(very sparse vs. very dense cell populations) and also
percentages of cells in each population (populations
of interest as low as 0.1% of total events),

(iv) able to determine the number of cell populations as
the number of cell populations present in the data is
usually not known apriori,

(v) able to handle outliers as data can contain significant
number of outliers.

The above-mentioned characteristics of FCM data make
unsupervised analysis challenging as existing clustering algo-
rithms either do not address or have limitations in addressing
these requirements.

Clustering algorithms require the number of clusters that
they should identify to be specified apriori. There are several
approaches for choosing the number of clusters, including
resampling, cross-validation, and various information crite-
ria [111]. Zeng et al. [53] use the peaks of density distribution
of each channel of FCM data and estimate the numbers of
clusters to be identified by k-Means algorithm. Lo et al. [46]
propose to use Bayesian information criteria (BIC) in the
context of a model-based clustering approach to estimate the
optimal number of clusters. BIC is computationally cheap to
compute once maximum likelihood estimation for the model
parameters has been completed, an advantage over other
approaches, especially in the context of FCM where datasets
tend to be very large. While computationally cheap, BIC
relies heavily on an approximation of marginal likelihoods,
which might not be very accurate for some data. Alternative
approaches such as the integrated completed likelihood [112]
may improve the estimation of the number of clusters. Nev-
ertheless, combined with expert knowledge, such approaches
can provide guidance on choosing a reasonable starting
number of clusters.

Sometimes it is possible that even if the actual number of
clusters is known, the clustering algorithm may not identify
the correct clusters at the level of separation that is desired.
This can happen when there is a rare cell population within
the FCM data. In this case, the clustering algorithm may
consider the rare population as an outlier or as part of a larger
cell population and instead divide larger cell populations
into smaller populations. One approach to overcome this
problem might be clustering the data with higher number
of clusters with the hope that the rare populations are
represented by separate clusters and use some merging
algorithm to combine the clusters that are similar according
to a criterion.

k-means clustering algorithm is one of the methods that
have been used in literature. While this approach performs
well when the clusters are spherical in shape, clusters in
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FCM data usually are not spherical. Demers et al. [82] have
proposed an extension of k-means allowing for nonspherical
clusters, but this algorithm has been shown to lead to inferior
performance compared to fuzzy k-means clustering [50]. In
fuzzy k-means [113], each cell can belong to several clusters
with different association degrees, rather than belonging
to only one cluster. Even though fuzzy k-means takes into
consideration some form of classification uncertainty, it is
a heuristic-based algorithm and lacks a formal statistical
foundation. Other choices include hierarchical clustering
algorithms (e.g., linkage or Pearson coefficients method).
However, these algorithms are not appropriate for FCM data,
since the size of the pairwise distance matrix increases in the
order of n? with the number of cells, unless they are applied
to some preliminary partition of the data [72], or they are
used to cluster across samples, each of which is represented
by a few statistics aggregating measurements of individual
cells [87, 114]. Since the required processing time for some
clustering algorithms increases significantly by the increase
in the number of events and parameters of FCM data,
subsampling the data might be a suitable approach to reduce
the processing time. Care should be taken when performing
subsampling to make sure that the properties of the original
data are preserved after this process. For example, a random
uniform sampling of data may not be a suitable approach
as it can discard the small populations present in the data.
One alternative might be using a guided sampling approach
in which representative events are selected from low-density
populations as well. This might be achieved by different
strategies such as looking at density distributions of the
data or performing a coarse clustering before subsampling
procedure.

An alternative approach for FCM data gating is to model
the FCM data with mixtures of distributions. The most com-
monly used model-based clustering approach is based on
finite Gaussian mixture models [93, 115]. However, Gaussian
mixture models rely on the assumption that each component
follows a Gaussian distribution, which is often not the case
when modeling FCM data. A common approach is to look
for transformations of the data that make the normality
assumption more realistic. Lo et al. [46] proposed the use
of the Box-Cox [116] transformation prior to using a model-
based clustering. In addition to nonnormality, there is also
the problem of outlier identification in mixture modeling.
As mentioned earlier, replacing the Gaussian distribution
with a more robust one (e.g., t [94, 115]) or adding an
extra component to model the outliers (e.g., uniform [92]) is
suggested to deal with outliers. The ¢-distribution is similar
in shape to the Gaussian distribution with heavier tails
and thus provides a robust alternative [117]. The Box-Cox
transformation is a type of power transformation, which
can bring skewed data back to symmetry, a property of
both the Gaussian and t-distributions. In particular, the Box-
Cox transformation is effective for data where the dispersion
increases with the magnitude, a scenario not uncommon to
FCM data [46].

One of the benefits of model-based clustering approach
is that it provides mechanism for both “hard” clustering (i.e.,
the partitioning of the whole data into separate clusters)
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and fuzzy clustering (i.e., a “soft” clustering approach in
which each event may be associated with more than one
cluster) [46]. The latter approach is in line with the rationale
that there exists uncertainty about to which cluster an event
should be assigned.

5.5. Cluster Labelling. Cluster labelling (or cluster matching)
between samples is usually performed manually. Approaches
that can label the clusters based on their location such as
mean or median fluorescent intensity (MFI) of known cell
populations or their location relative to other clusters have
been used in literature [45]. Cluster labelling approaches
that take into account the shape and rotation of cell
populations in addition to their locations might provide
more robust results. In case of using the absolute location
of cell populations for cluster labelling, data normalization
prior to labelling is necessary as significant changes in the
location of cell populations (as shown in Figure 4) can result
in mismatching cell populations. Note that in case of using
supervised techniques for automated gating, labelling is not
needed as the gating algorithm determines the labels of
events (e.g., whether the events are of cell type 1 or cell
type 2). Therefore, this information can be used for labelling
(matching) cell populations between samples as well.

5.6. Feature Extraction. Prior to interpretation of gating
results, features representing the identified cell populations
need to be defined. In literature, usually the percentages
and locations of cell populations are used for interpretation
purposes. However, other characteristics of cell populations
such as their shapes (e.g., whether they are spherical or
ellipsoidal), dispersion, orientation, and proportion of a
specific cell population relative to another cell population
may also be useful to achieve better interpretation results.
Since the features that may carry information are not always
known apriori, one option is to generate as many features as
possible and then use feature selection techniques to discard
the uninformative and also redundant features.

Furthermore, approaches such as the one introduced in
[41] that uses other representations of the characteristics
of the FCM data (characteristics based on kernel density
estimation in the case of [41]) might be interesting to
investigate further. Since the final aim in some studies such
as the one presented in [41] is to perform a classification task
(e.g., healthy versus patient), gating FCM data may not be
necessary (except to find basic cell populations such as live
cells and lymphocytes) which can potentially eliminate the
errors that can be introduced in the system by poor gating
strategies.

5.7. Interpretation. Although mostly done manually, inter-
pretation of results can utilize many methods that have
been developed in computer science for finding associations
between FCM samples with their labels (e.g., disease diag-
nosis) or identifying cluster of patients with similar FCM
data. Depending on the purpose of the study, supervised
or unsupervised learning techniques can be used. For
example, if the aim is to classify a sample as disease or
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healthy, supervised learning techniques can be used. For the
purpose of finding patients who have similar data, standard
unsupervised learning techniques can be utilized.

6. Conclusions

The need for completely automated analysis of FCM data
is becoming more evident with the advances in high-
throughput FCM technology. To date, most research has
been focused on developing approaches for automated gating
of FCM data. Manual gating is recognized as labor intensive,
subjective, and prone to error when processing large num-
bers of samples. Therefore, automated gating methods will
allow for a faster and more robust data analysis pipeline.
Although significant effort is still needed to develop auto-
mated gating algorithms that address challenging aspects of
FCM data, we believe that the research community needs to
look beyond automated gating and develop bioinformatics
tools that facilitate building completely automated FCM data
analysis pipelines. It should be noted that the development
of robust, automated methods for high-throughput FCM
data analysis also requires high-quality data to feed into
the analysis framework. Generating this high-quality data
requires well-designed experiments with the appropriate
positive and negative controls.

A rigorous quantitative assessment is important before
using automated approaches in practice, as a replacement
for expert manual analysis. Moreover, it is likely that one
data analysis solution may not be suitable to address specific
questions of a study or address the challenges of analyzing a
specific FCM dataset. For example, if somebody is interested
in identifying a previously known type of cell, supervised
techniques might be better suited. Overall, in order to use
automated data analysis approaches in biomedical research
and clinical setting, we need to develop more generic solu-
tions or design smart algorithms that can tune themselves
with little intervention, as the users may not have enough
knowledge of bioinformatics techniques. The availability of
a wide variety of example data is crucial, as it would aid
in the development, evaluation, and comparison of different
automated analysis methodologies.

The development of automated FCM data analysis
approaches will greatly facilitate both basic research and clin-
ical applications in medical/agricultural areas that depend
upon this technique. Since FCM generates data sets as
complex and informative as gene arrays using markers for
different cell populations defined by phenotypic, activation,
or cytokine expression features, optimizing FCM-based data
analysis will also help develop FCM as a proteomics and
diagnostic tool with widespread applications in both basic
and clinical laboratories.
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